นาซา
Explore the universe and discover our home planet with the official NASA Instagram account
ของ NASA
มี 23,218 คนชอบรูปนี้
-
Lighting the Sky: Bright lights illuminate the United Launch Alliance Delta IV Heavy rocket with NASA's Orion spacecraft mounted atop, early on Friday, Dec. 5, 2014, at Cape Canaveral Air Force Station's Space Launch Complex 37, Florida. Orion is scheduled to make its first flight test later in the morning launch atop the Delta IV Heavy. The launch window opens at 7:05 a.m. EST / 11:00 UTC and closes at 9:44 a.m. EST / 14:44 UTC. The spacecraft will orbit Earth twice, reaching an altitude of approximately 3,600 miles above Earth before landing in the Pacific Ocean. No one will be aboard Orion for this flight test, but the spacecraft is designed to allow us to journey to destinations never before visited by humans, including an asteroid and Mars. Photo credit: (NASA/Bill Ingalls) #space #orion #orionlaunch #nasa #launch #capecanaveral #deltaiv #journeytomars; -
Orion Launch Scrubbed; Next Opportunity Friday: The Thursday, Dec. 4 launch of Orion's flight test has been scrubbed because of an issue related to fill and drain valves on the Delta IV Heavy rocket that teams could not troubleshoot by the time the launch window expired. The next launch window opens at 7:05 a.m. Eastern on Friday, Dec. 5. The un-crewed Orion will orbit 3,600 miles above Earth before splashing down in the Pacific. Orion is being designed to carry astronauts on exploration missions into deep space, including a trip to an asteroid and eventually to Mars. Inage Credit: NASA #space #orion #orionlaunch #nasa #launch #capecanaveral #deltaiv #journeytomars; -
Earlier, the United Launch Alliance tower used to prepare #Orion for liftoff was moved away. The United Launch Alliance Delta IV Heavy rocket with NASA’s Orion spacecraft mounted atop is seen here at Cape Canaveral Air Force Station's Space Launch Complex 37, Florida. Orion is scheduled to make its first flight test on Dec. 4 with a morning launch atop the Delta IV Heavy. The spacecraft will orbit Earth twice, reaching an altitude of approximately 3,600 miles above Earth before landing in the Pacific Ocean. No one will be aboard Orion for this flight test, but the spacecraft is designed to allow us to journey to destinations never before visited by humans, including an asteroid and Mars. Live launch coverage of Orion begins on NASA TV at 4:30 a.m. EST. at http://www.nasa.gov/nasatv Image credit: NASA/Bill Ingalls #Orion #JourneyToMars #NASA #Space; -
Less than 24 hours before the launch of NASA’s Orion spacecraft atop a United Launch Alliance (ULA) Delta IV Heavy rocket, the L-1 forecast has improved to and there is a 70 percent chance of favorable weather. The two concerns remain the Flight Through Precipitation and Liftoff Wind Rules. The forecast prepared by the Spaceflight Meteorology Group at NASA’s Johnson Space Center in Houston continues to be favorable for Orion’s Pacific Ocean splashdown about 4.5 hours after launch. The detailed weather forecast is below. Orion’s flight test is the next step in NASA’s journey to Mars. Orion is NASA’s new spacecraft built to carry astronauts to destinations never before visited by humans, including an asteroid and Mars. On this uncrewed test flight, Orion will test systems critical to crew safety, including the heat shield, parachutes, avionics and attitude control, as it travels farther into space than any spacecraft built for humans has traveled in more than 40 years. Liftoff is scheduled for 7:05 a.m. EST on Thursday from Space Launch Complex 37 at Cape Canaveral Air Force Station, Florida. During its two-orbit flight, Orion will travel 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth. Orion will return through Earth’s atmosphere at speeds approaching 20,000 mph, generating temperatures near 4,000 degrees Fahrenheit on its heat shield. The spacecraft will land approximately 600 miles off the coast of Baja, California. Orion will be recovered by a combined NASA and U.S. Navy team that will attach it to cables that will pull it into the flooded well deck of the USS Anchorage. Image credit: NASA #orion #NASA #space #journeytomars; -
The Orion spacecraft will take crews farther from Earth than any human-rated spacecraft since Apollo. The first step of that adventure comes this week when the Orion flight test sends an uncrewed version of the capsule about 3,600 miles above Earth – far enough to encounter the high radiation zones that circle the planet and measure their effects on the inside of the spacecraft. On its way back home, Orion’s heat shield will bear the brunt of scorching plasma as the spacecraft dives into the atmosphere at 20,000 mph before slowing for splashdown. It’s a stress test for more than the spacecraft, of course – people from NASA and Lockheed Martin along with scores of others involved in the program will watch every readout carefully. No matter what happens, the flight test has already made strides in development of America’s next deep-space vehicle for astronauts. Live coverage begins on NASA's website and on NASA TV at 4:30 a.m. EST on Thursday, Dec. 4. A 2-hour, 39-minute launch window opens at 7:05 a.m. EST so the launch and recovery of the spacecraft after splashdown can both take place in daylight. Orion will lift off on the strength of a United Launch Alliance Delta IV Heavy, currently the largest rocket in America's inventory. Pictured here is an artists rendering of the Orion spacecraft. Image credit: NASA #orion #journeytomars #space #NASA;
-
Orion Spacecraft at the Launch Pad: With access doors at Space Launch Complex 37 opened on Nov. 24, 2014, the Orion spacecraft and Delta IV Heavy stack is visible in its entirety inside the Mobile Service Tower where the vehicle is undergoing launch preparations. Orion will make its first flight test on Dec. 4 with a morning launch atop the United Launch Alliance Delta IV Heavy rocket. Orion’s crew module is underneath the Launch Abort System and nose fairing, both of which will jettison about six minutes, 20 seconds after launch. The tower will be rolled away from the rocket and spacecraft 8 hours, 15 minutes before launch to allow the rocket to be fueled and for other launch operations to proceed. The spacecraft will orbit the Earth twice, including one loop that will reach 3,600 miles above Earth. No one will be aboard Orion for this flight test, but the spacecraft is being designed and built to carry astronauts on exploration missions into deep space. Launch is scheduled for Thursday, Dec. 4 at 7:05 a.m. EST, the opening of a 2 hour, 39-minute window for the day. The L-3 Day launch weather forecast 60 percent "go." Image Credit: NASA/Kim Shiflett #nasa #orion #space #nasaorion @exploreNASA #deltaiv #launch #ula; -
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Thank you for joining us as we shared images & information about black holes. We'll keep hunting for black holes and studying them. How? Spotting black holes is tricky. Because they don’t give off light, astronomers have a difficult time pinpointing their location. But when a black hole gets close enough to an object, like a star, for example, and begins consuming the object's mass, the matter that pours into its gravitational clutches can get so hot that it glows and releases energy in the form of X-ray light. The most powerful X-rays are emitted from the hottest material swirling just outside the edge of the black hole. By observing this light with space telescopes, scientists can determine where black holes are hiding in the cosmos. Credit: NASA's Goddard Space Flight Center; -
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Today, we'll post pics & info about black holes. Astronomers using data from NASA’s Hubble Space Telescope and ground observation have found an unlikely object in an improbable place -- a monster black hole lurking inside one of the tiniest galaxies ever known. The black hole is five times the mass of the one at the center of our Milky Way galaxy. It is inside one of the densest galaxies known to date -- the M60-UCD1 dwarf galaxy that crams 140 million stars within a diameter of about 300 light-years, which is only 1/500th of our galaxy’s diameter. If you lived inside this dwarf galaxy, the night sky would dazzle with at least 1 million stars visible to the naked eye. Our nighttime sky as seen from Earth’s surface shows 4,000 stars. The finding implies there are many other compact galaxies in the universe that contain supermassive black holes. The observation also suggests dwarf galaxies may actually be the stripped remnants of larger galaxies that were torn apart during collisions with other galaxies rather than small islands of stars born in isolation. Seen here is an artist's view of M60-UCD1 black hole. Image Credit: NASA, ESA, STScI-PRC14-41a; -
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Today, we'll post pics & info about black holes. Home from #BlackFriday? Black hole Sagittarius A* calls the Milky Way home. The center of the Milky Way galaxy, with the supermassive black hole Sagittarius A* (Sgr A*), located in the middle, is revealed in these images. Astronomers have used NASA’s Chandra X-ray Observatory to take a major step in understanding why material around Sgr A* is extraordinarily faint in X-rays. The large image contains X-rays from Chandra in blue and infrared emission from the Hubble Space Telescope in red and yellow. The inset shows a close-up view of Sgr A* in X-rays only, covering a region half a light year wide. The diffuse X-ray emission is from hot gas captured by the black hole and being pulled inwards. This hot gas originates from winds produced by a disk-shaped distribution of young massive stars observed in infrared observations. These new findings are the result of one of the biggest observing campaigns ever performed by Chandra. During 2012, Chandra collected about five weeks worth of observations to capture unprecedented X-ray images and energy signatures of multi-million degree gas swirling around Sgr A*, a black hole with about 4 million times the mass of the Sun. At just 26,000 light years from Earth, Sgr A* is one of very few black holes in the universe where we can actually witness the flow of matter nearby. Image credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI; -
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Today, we'll post pics & info about black holes. This black hole naps amid chaos, like a post-sale #BlackFriday shopper. Nearly a decade ago, NASA's Chandra X-ray Observatory caught signs of what appeared to be a black hole snacking on gas at the middle of the nearby Sculptor galaxy. Now, NASA's Nuclear Spectroscopic Telescope Array (NuSTAR), which sees higher-energy X-ray light, has taken a peek and found the black hole asleep. The slumbering black hole is about 5 million times the mass of our sun. It lies at the center of the Sculptor galaxy, also known as NGC 253, a so-called starburst galaxy actively giving birth to new stars. At 13 million light-years away, this is one of the closest starbursts to our own galaxy, the Milky Way. The Milky Way is all around more quiet than the Sculptor galaxy. It makes far fewer new stars, and its behemoth black hole, about 4 million times the mass of our sun, is also snoozing. The findings are teaching astronomers how galaxies grow over time. Nearly all galaxies are suspected to harbor supermassive black holes at their hearts. In the most massive of these, the black holes are thought to grow at the same rate that new stars form, until blasting radiation from the black holes ultimately shuts down star formation. In the case of the Sculptor galaxy, astronomers do not know if star formation is winding down or ramping up. Seen here is the Sculptor galaxy is seen in a new light, in this composite image from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Southern Observatory in Chile. Image credit: NASA/JPL-Caltech/JHU;
-
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Today, we'll post pics & info about black holes. Looking for a size large this #BlackFriday? Here's a supermassive black hole. This artist's concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. (Smaller black holes also exist throughout galaxies.) In this illustration, the supermassive black hole at the center is surrounded by matter flowing onto the black hole in what is termed an accretion disk. This disk forms as the dust and gas in the galaxy falls onto the hole, attracted by its gravity. Also shown is an outflowing jet of energetic particles, believed to be powered by the black hole's spin. The regions near black holes contain compact sources of high energy X-ray radiation thought, in some scenarios, to originate from the base of these jets. This high energy X-radiation lights up the disk, which reflects it, making the disk a source of X-rays. The reflected light enables astronomers to see how fast matter is swirling in the inner region of the disk, and ultimately to measure the black hole's spin rate. Image credit: NASA/JPL-Caltech; -
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Today, we'll post pics & info about black holes. Do black holes come in size medium? Black holes can be petite, with masses only about 10 times that of our sun -- or monstrous, boasting the equivalent in mass up to 10 billion suns. Do black holes also come in size medium? NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, is busy scrutinizing a class of black holes that may fall into the proposed medium-sized category. The largest black holes, referred to as supermassive, dominate the hearts of galaxies. The immense gravity of these black holes drags material toward them, forcing the material to heat up and release powerful X-rays. Small black holes dot the rest of the galactic landscape. They form under the crush of collapsing, dying stars bigger than our sun. Evidence for medium-sized black holes lying somewhere between these two extremes might come from objects called ultraluminous X-ray sources, or ULXs. These are pairs of objects in which a black hole ravenously feeds off a normal star. The feeding process is somewhat similar to what happens around supermassive black holes, but isn't as big and messy. In addition, ULXs are located throughout galaxies, not at the cores. In this image, the magenta spots show two black holes in the spiral galaxy called NGC 1313, or the Topsy Turvy galaxy. Both black holes belong to a class called ultraluminous X-ray sources, or ULXs. The magenta X-ray data come from NuSTAR, and are overlaid on a visible image from the Digitized Sky Survey. Image credit: NASA/JPL-Caltech/IRAP; -
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Today, we'll post pics & info about black holes. Not the right #BlackFriday shopping weather? In this artist's illustration, turbulent winds of gas swirl around a black hole. Some of the gas is spiraling inward toward the black hole, but another part is blown away. A black hole is a place in space where gravity pulls so much that even light can not get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying. Because no light can get out, people can't see black holes. They are invisible. Space telescopes with special tools can help find black holes. The special tools can see how stars that are very close to black holes act differently than other stars. Artwork Credit: NASA, and M. Weiss (Chandra X -ray Center); -
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Today, we'll post pics & info about black holes. Tired from shopping? Maybe it's time to devour some snacks. Here's a black hole snacking on a star. On March 28, 2011, NASA's Swift detected intense X-ray flares thought to be caused by a black hole devouring a star. In one model, illustrated here, a sun-like star on an eccentric orbit plunges too close to its galaxy's central black hole. About half of the star's mass feeds an accretion disk around the black hole, which in turn powers a particle jet that beams radiation toward Earth. Video credit: NASA/Goddard Space Flight Center/CI Lab; -
It's #BlackFriday, but for us, it's the 2nd annual #BlackHoleFriday. Today, we'll post pics & info about black holes. Here's a 2 for 1 special showing two black holes merging into one. A black hole is a massive object whose gravitational field is so intense that no light (electromagnetic radiation) can escape it. When two orbiting black holes merge, a massive amount of energy is released in the form of jets. Meanwhile, the movement of these massive bodies disturbs the fabric of space-time around them, sending ripples of gravitational waves radiating outward. These waves are predicted by Einstein's theory of general relativity, but have yet to be directly detected. In this video, we see a closer look at the center of a spiral galaxy reveals a pair of black holes locked in a death spiral. When they merge, the massive amount of energy is released in the form of jets. Credit: NASA;
Instagram is a registered trademark of Instagram, inc.